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AN ANALYSIS OF SUPERSONIC FLOW PHENOMENA IN CONICAL NOZZLES
BY A METHOD OF CHARACTERISTICS

By Linwood B. Callis
Langley Research Center

SUMMARY

The method of axisymmetric irrotational characteristics is used in the analysis of
the supersonic and hypersonic flow of a calorically perfect gas through conical nozzles.
Solutions determine the Mach number, flow angularity, and stream function throughout
the flow field in addition to the nozzle lengths and cone half-angles required for the expan-
sion of the flow to a given center-line Mach number.

Calculations carried out for a wide range of inlet Mach numbers and cone half-
angles allow, as in previous work, the prediction and explanation of the formation of
oblique shock waves within the started nozzle. By using a characteristics method, shock-
free solutions are obtained with minimum distortion of the conical profile. Typical Mach
number contours with shock waves eliminated are shown.

An evaluation of the commonly made one-dimensional-flow assumption as applied
to conical nozzles is made, and it is shown that significant errors may be present.

Finally, the existence of regions in which the flow properties prove to be independent
of changes in the cone half-angle is pointed out and its importance is described and
discussed.

INTRODUCTION

Currently, at Langley Research Center, much effort is being devoted to a study of
basic modifications of the expansion tube as described in reference 1. Among the modi-
fications considered, the one most likely to gain acceptance appears to be the expansion
tunnel (ref. 2), a device utilizing a scoop-type conical nozzle to expand flows at relatively
high Mach numbers (between 2 and 20) to even higher Mach number test conditions. To
carry out the analysis of such a device, it was necessary that some means of accurately
predicting the perfect-gas flow properties through the conical nozzles be available. The
commonly made assumptions of ""one-dimensional' flow (ref. 3) were believed to be
inadequate since, for high Mach numbers, the flow to be expanded may proceed along the
center line for a large number of inlet radii past the nozzle entrance before interacting



with the initial steady-flow expansion characteristics. Obviously, under such circum-
stances, a one~dimensional analysis would prove to be inadequate, and possibly the cause

of serious error.

As a result of these considerations, such flows were examined in a more detailed
fashion allowing reasonably precise information to be extracted for purposes of design
and analysis. To this end, the method of axisymmetric irrotational characteristics has
been applied, yielding solutions for a wide range of nozzle half-angles and inlet Mach

numbers.

In addition to the information expected of the resulting computer program, several
effects were observed which were believed to be of particular interest. Among these
were recognition of the fact that, for scoop nozzles with sharp corners, a portion of the
expanded flow field is completely independent of the growth of a viscous layer along the
nozzle wall and that a standing oblique shock system is present in the steady-flow nozzle.
Such shock systems have been observed in reference 4 and their cause and a method of
elimination discussed in reference 5. Observance of these effects in the present work
prompted an extended analysis conducted to determine

(1) the practical value, if any, of the region of flow independent of viscous effects
on the wall, and

(2) whether the shock system could be eliminated from sharp-cornered scoop
nozzles with inlet Mach number greater than 2 without seriously altering the nozzle

profile.

A discussion of these effects and the means of analysis is presented in the following

sections.
SYMBOLS
A exit-to-inlet area ratio
Fx) general function of x
i.k,r summation indices
l,m parameters defined in equations (A3)
M Mach number
M, characteristics solution of Mach number



X'

one-dimensional solution of Mach number

Mach number at nozzle inlet

inlet radius of nozzle

radial distance in spherical coordinates

axial coordinate measured from nozzle inlet
nondimensional axial coordinates, x'/R

value of x on center line at beginning of region I
value of x on center line at termination of region I
radial coordinate measured from center line
nondimensional radial coordinate, y'/R

radial component of velocity vector

azimuthal component of velocity vector

component of velocity vector in 6 direction
ratio of specific heats, 1.4 for present work
boundary-layer displacement thickness

error parameters, (M - M1)/Mc

parameter defined in equations (A3)

flow angle, degrees

wall angle at nozzle corner, degrees

wall angle at nozzle corner corrected for viscous effects (see eq. (3)), degrees



Oy wall angle in region III, degrees

Omax wall angle at inflection point, degrees

BW wall angle for source flow, degrees

W= sin'l(l/M)

J4] mass density

o} azimuthal angle in spherical coordinates

Subscripts:

AB characteristic intersection at which properties are known
C characteristic point to be solved for

i conditions at nozzle inlet

max conditions at inflection point of nozzle wall

ref conditions at known reference point

A bar over a symbol indicates quantities averaged during iterative solution for a

characteristic point.

ANALYSIS

The present investigation was carried out by using the well-known equations of
change, derived in reference 6 and given in appendix A, along the characteristic lines.
No general discussion of the equations, their derivation, or their application is included
in the present work, inasmuch as a detailed discussion is given in reference 6.

Initially, the problem consisted of setting up a forward-computing characteristics
solution for supersonic and hypersonic flows through conical nozzles. The inlet-flow
Mach numbers and flow angularity were assumed to be known and the wall shape (conical)
was specified. Figure 1 illustrates the general configuration, nomenclature, and the
coordinate system used, the origin of which is taken on the center line at the nozzle

entrance.




Input required for such a forward-computing characteristics solution consists of the
specification of values of x, y, 6, u,and M along the leading expansion character-
istic from the corner to the center line and the Prandtl-Meyer conditions at the sharp
nozzle corner. With the specification of the required input, the characteristics solution
may then proceed downstream, flow properties being determined at the intersection of
first-family with second-family characteristics.

Since the validity of the characteristics solutions depends in part upon the choice of
variables, the mesh size used, and the means of determining higher order effects, it was
desired to test the reliability of the present solutions by solving numerically a flow system
for which exact solutions can be determined. For this purpose, solutions to source or
radial flow were generated with the present program.

Properties of the source flow field, depending solely on the radial distance from the
designated source, may be analytically described simply by a consideration of the com-
pressible continuity equation written in spherical coordinates together with the isentropic
flow relations. Derivation of the governing field equations for this flow is presented in
appendix B as well as the equations necessary to determine, for program input purposes,
the shape of and properties along the leading characteristic. Results of this comparison
are shown in figure 2 for source flow with a beginning Mach number at the wall of 2.0 and
fy = 5.0°. Agreement with theory in all check cases was excellent.

It was believed at this point that solutions to the conical nozzle problem could be
generated with confidence. However, when these solutions were attempted, it was deter-
mined that characteristics of like family intersected near the center line, suggesting the
existence of an oblique shock wave (as observed in ref. 4) lying just downstream of the
corner expansion. Sketch 1 indicates this phenomenon, and Mach number contours are
shown in figure 3 for a typical case in which this effect was observed. These Mach num-
ber contours, coupled with observed regions of negatively inclined flow near the center
line and regions of flow more positively inclined than the wall angle serve both to confirm
and to indicate the necessity of an oblique shock structure in this position.

Sketch 1



At this point, every effort was made to make certain that the observed effects were
not due to the particular inlet condition, wall angle, characteristics mesh size, or com-
puting errors. Therefore, a large number of cases were run which encompassed a varia-
tion of these parameters. In each case, the computing sequence was checked in detail and,
in each, the converging of the characteristics was present. It was concluded that the phys-
ical presence of a weak shock system, also reported in references 4 and 5, was the cause
of the difficulty and that the flow problem as posed could not be solved by means of the
irrotational system of characteristics.

Two alternatives presented themselves: Analyze the system, including the discon-
tinuous structure or determine numerically the shape of a transition section, eliminating
the shock, yet allowing a conical nozzle to be attached immediately downstream of this
section. The second alternative was chosen.

The problem as posed at this point consisted of determining the shape of a transition
region required to eliminate the observed compression characteristics. In order to
accomplish this, the flow field was divided into three computational regions as shown in

figure 4.

Region I consists of the flow field embraced by the corner rays. This portion of the
flow was determined to be free of compression characteristics and computations were
carried out as originally intended. Though a rigorous determination of the envelope of
intersecting characteristics would shift the beginning of region II slightly upstream, it is
believed that the shift would not be sufficient to affect the flow in region I. Hence this
effect was ignored.

It is within region II that the observed compressions are eliminated. This elimina-
tion is accomplished by restricting the center-line Mach number in region II to the last
determined value in region I and thus eliminating the possibility of a shock. This specifi~
cation of the center-line Mach number, coupled with a solution in region I, permits the
flow of characteristic computations (indicated by arrows in fig. 4) to be reversed and thus
allows the determination of the wall shape required to insure such a flow configuration.

With such a computation scheme in region II, it may be expected that the wall angle
will initially vary in a fashion such that the flow exiting from region I will be further
expanded and will allow elimination of the troublesome intersecting characteristics.
However, to satisfy continuity relationships, it can be argued that maintaining a constant
center-line Mach number in region II will require that an inflection point and maximum
wall angle be present past which the wall angle grows progressively smaller until it
reaches zero and the flow across the entire cross section has constant properties. It is
at, or downstream of, the inflection point that region II may be safely terminated by
attaching a conical nozzle with a half-angle equal to the local wall angle.



At this point, a word of explanation is offered with regard to the determination of
wall-point conditions in region II. Normally, when the center-line Mach number is spec-
ified, wall contours are determined by evaluating properties along a characteristic line
from the center line toward the wall until continuity requirements are satisfied. This
procedure, however, implies an upstream movement from one characteristic to the next,
the reverse of the present situation illustrated in sketch 2.

General flow of calculations
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Sketch 2

Hence, this means of determining the wall contour cannot be used. Instead, the predeter-
mined center-line Mach number in region II and the solutions along the preceding charac-
teristic are used to determine solutions for properties along the characteristic in question
at all points except the wall point. Values of M and 6 at the wall point (the coordi-
nates of which are simply determined) cannot be determined with the equation of change
(eq. (Al)) since, without interpolating, only one equation is available to solve for the two
flow conditions. Various methods are available for determining the flow variables at
this wall point, all involving either interpolation or extrapolation. Recourse in this
instance is made to a Lagrangian extrapolation of M and 6, along the characteristic of
interest, to the wall by utilizing a fourth-degree-polynomial fit. The relation yielding
such a fit to a function F(x) is

1 N /X - X:
Fx) = kzo Pl I (———ka _ x]-) )



the indexed values of X being the points at which the function is known. With the five
known points immediately preceding the wall point (shown in sketch 2) equation (1) may
be used to evaluate M and 6 at the wall. This extrapolation, carried out along a
characteristic of the first family in terms of X, extends one mesh spacing or less and
is believed to be quite accurate. Computations proceed in this fashion until the wall
inflection point is reached or until a specific local wall angle (less than the maximum
wall angle) downstream of the inflection point is reached.

In region I, the direction of computation along the characteristics is once again
reversed and the solution, with the wall shape specified, is continued to completion. Such
a computational scheme, programed for an electronic computer, was found to be success-
ful in removing shocks from conical nozzles. Similar methods were used in reference 5.
Typical Mach number contours for such a shock-free nozzle are indicated in figure 5 for
a uniform parallel flow of M; = 2.0 entering a nozzle with an initial wall angle of 9.58°,
The solution indicates that, at the end of the transition section, a maximum wall angle of
15.15° is reached, this being taken as the half-angle of the attached conical nozzle. Fur-
ther, Mach number contours illustrate the existence of a rhombus of parallel constant-
property flow resulting from the specification of an invariant center-line Mach number
with region II. Downstream of this rhombus, contours smooth out and approach the
spherical-cap source flow profiles (fig. 2(b)) to which they must tend in the limit, (Fur-
ther discussion of this flow configuration is presented in a subsequent section.)

RESULTS AND DISCUSSION

Region I

Numerical solutions to the present problem indicate that in region I no converging
or compression characteristics are present. This is both expected and easily understood
since in this flow region no effects of the wall contour are manifested, the expansion being
generated solely by the flow around the sharp corner. Shown in figure 6 is a composite
analysis of the center-line flow within region I. Presented are the axial distance x; for
a given M; and ¢, at which this region terminates and the observed shock occurs.
Cross-plotted are values of Mach number reached during this expansion and immediately

prior to the shock,

The upstream limit of region I, X, is given by the expression
Xp =\M;" - 1 (2)

for uniform entering flow and is the number of radii the center-line flow must travel past
the nozzle inlet before the flow expansion actually begins. Clearly, to this point in the



nozzle, use of a one-dimensional approximation is in error because the center-line flow
has not ""sensed' the presence of the nozzle. Errors of this nature are more severe for
configurations having high inlet Mach numbers such as those anticipated in expansion-
tunnel operation.

Also interesting is the relative expansion effectiveness of a given corner turn in an
axisymmetric nozzle as compared to a wedge-type (two-dimensional) nozzle. Figure 6
indicates that, for M; =5 and 6 = 1090, the terminal Mach number, generated by the
expansion from the corner, is 35 on the center line. In two dimensions, the same
entrance conditions and corner turning angle result in a terminal Mach number of 8.83.
Though such a trend is expected from area-ratio considerations, the magnitude of the
difference is startling.

At this point, one is inclined to speculate on the possible advantages of using an
axisymmetric corner expansion rather than conventional nozzles for the purpose of gen-
erating hypersonic flows. First, however, the similarity between this type of expansion
process and the minimum-length nozzle expansion should be commented upon. In both,
all expansion characteristics are generated at the sharp inlet corner of the nozzle. The
minimum-length nozzle is then contoured so that these characteristics, having been tra-
versed by the flow, are canceled, uniform flow being established at the nozzle exit. The
major disadvantage of such a nozzle is that, due to viscous effects, it operates primarily
at one design point, and attempts to utilize the nozzle at other than design conditions
result in incomplete cancellation, possibly prohibitive.

In order to circumvent such difficulties, the axisymmetric corner expansion with
no cancellation may be used, provided the resultant flow gradients in region I are tolerable,
In this connection, figures 7 and 8 present, respectively, contours of constant M and 9
in region I as well as the transverse extent of region I (dashed lines) as determined by
values of M; and 6j. Itis clear from figure 7 that, for values of M = 20, only small
transverse variations of M occur near the center line (y £1) for 2 =M; =20. The
extent of the region in which this is true is determined by the particular values of M;
and 6; under consideration. Figure 8, presenting contours of constant ¢, indicates
that for x Z 30 the transverse variation of 8 near the center line is essentially that
of source flow for the M; considered here. Clearly, as M; decreases and M
increases, the approximation of these gradients by source flow gradients becomes more
valid and the region over which the approximation can be made becomes larger. Hence,
the corner expansion provides a flow with essentially source flow gradients with an expan-
sion to the desired M in the minimum possible length. In addition, since the flow in
region I is insensitive to the wall contour, the wall may be diverted in such a way as to
insure that viscous effects on the center-line flow are minimized. In fact, in a shock or
expansion tube, if the nozzle inlet is used as a scoop expanding (as in the present work)
only the uniform "inviscid core' of the oncoming flow, viscous effects can be constrained

9



to a modification of the corner half-angle by an amount tan-1 (cos 61 dé*/dx) due to the,
initial growth of the displacement thickness at the sharp leading edge. In this connection,
the relationship between 6; and 6y is given by

by = 61 - tan~1(cos 6y d6*/dx) (3)

the two angles being identical for inviscid flow. All computations presented herein are
for inviscid flow.

Two more points, flow invariance and error due to one-dimensional approximations,
should be noted. For a given inlet Mach number, increasing the corner angle a given
amount simply extends the flow expansion in region I, leaving completely unchanged the
flow established by the original corner. This is, of course, advantageous in that large-
angle solutions for given inlet Mach numbers encompass all small-angle solutions. There-
fore, from a practical viewpoint, flow generated by lower values of 6; is unaffected by
viscous fluctuations (see eq. (3)) in the turning angle as long as these fluctuations occur
at higher values of 6. Consequently, if 67 is made large enough to provide a cushion
against such fluctuations, viscous effects may be removed from the test entirely as
indicated in sketch 3.

Portion of region 1
affected by viscous

layer

I:]Portion of region I
free of viscous effects

Sketch 3

The prediction of the center-line flow in region I is best accomplished with the aid
of numerical solutions presented in figure 6 rather than approximate one-dimensional
methods. One-dimensional assumptions lead to errors in the predicted center-line Mach
M, -M

c 1
Mc
ure 9 as a function of A, 61, and Mj. As seen in figure 9, these errors can be signifi-

cant (up to 60 percent), with M; having values both above and below Mec.

number, an indication of this error being the parameter Ay = shown in fig-

10



Values of Mj > M occur when the flow first enters the nozzle; a one-dimensional
analysis predicts an immediate increase in My When, in fact, the center-line Mach num-
ber remains constant for M? - 1 radii past the nozzle entrance. When the expansion
is encountered, however, values of M, increase more swiftly than values of M;,
eventually surpassing them. The one-dimensional theory now tends to underpredict the
characteristics solution. Curves in figure 9 are shown only for region I (the corner
expansion) and are terminated at the end of this region by dashed lines.

Region II

The first characteristics reflected from the wall converge to form a weak shock
within region II near the center line. The formation of this shock wave is easily under-
stood upon consideration of figure 10. This figure presents typical contours of constant
flow inclination (6 = 39, 499, 50, and 6°) for uniform flow entering a conical nozzle at
M; = 1.5 with 6y = 4.14° and no transition section attached. As previously mentioned,
within region I some of the flow areas are inclined at angles larger than the conical wall
angle. This flow must, by some wave mechanism, be turned back toward the center line.
Since the expansion characteristics '"reflected' from the center line are unable to accom-
plish this, the mechanism which develops is a compression generated by the first charac~
teristics reflected from the wall processing the flow immediately after its exit from
region I. The shock formation then is a reconciliation of an incompatibility between the
flow at the exit of region I and the final wall angle reached at the sharp nozzle corner.

The cause of this overexpansion within region I may be traced to the terms -1 %x_

and -md-—x in the equations (A1) and (A2), respectively. These terms, which vanish in
the two-dimensional solution, contribute in the axisymmetric solution for 6 in such a
fashion that along a corner-ray characteristic 6 does not decrease monotonically from
the corner value to a center-line value of zero. Rather, these terms, peculiar to axisym-
metric flow, combine to drive 6 to a maximum value (greater than the wall angle) from
which it declines to zero at the center line.

Hence the shock, as pointed out in reference 5, is an axisymmetric effect not pres-
ent in two-dimensional flows. It is due to the overexpanded flow coupled with a wall
contour which does not permit the flow to be turned back toward the center line gradually.
From these considerations, it is clear that shocks may be present in a variety of nozzles
with a wide range of inlet Mach numbers and with contours which, though divergent, are
specified arbitrarily. To avoid this situation, the present scheme has been used to deter-
mine a transition region necessary to prevent shock formation. As has been argued pre-
viously, there is, at the downstream end of this transition, an inflection point. Figures 11,
Xmaxs 2and Ymax at this point as a

12, and 13 show, respectively, values of 6, ..,
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function of 6; and M;. Figure 14 illustrates a typical transition profile required to
prevent shocks from forming in a conical nozzle.

With values of Oyax, Xmax, 20d ymax available, it was believed that the entire
family of transition profiles could be easily represented by a fourth-degree polynomial
of the form

4
y= Z CxT 4)
r=0

where, with known conditions at the inflection point and sharp corner, the equations for
C; are determined to be

Cop=1.0 N
Cl = tan 91
1
C2 = [6(¥ymax - 1) - 3Xmax(tan 6y + tan 6pa5)]
Xmax
b (5)
Cq = [-8 1 1
3= [:- (Ymax - 1 +Xmax(3 tan 61 + 5 tan 9max):| 3
Xmax
1
Cy = @(Ymax - 1) - Xpax(tan 67 + 2 tan 9ma.xi|——4
Xmax J

The circular symbols shown in figure 14 indicate points on the transition profile
determined with the aid of equations (4) and (5) and data presented in figures 11 to 13.
Transition profiles may easily be determined in this fashion, and it is believed that these
profiles will result in shock-~free flow.

The section on "Analysis' indicates that computations in region II may be stopped
when the inflection point of the wall is reached. The program, however, is such that the
calculations of the wall contour could be continued past the inflection point until any
arbitrary wall angle, less than the value at the inflection point, is reached. Continuing
the calculations until 6; = 0 results in a minimum-length contour with uniform flow
over the entire cross section. This capability provides assurance that shock~free flow
can be achieved in a nozzle having any desired wall angle. In addition, if testing within
the rhombus of uniform flow is desired, the dimensions of this rhombus can be governed
by extending region II past the wall inflection point. It is, in fact, the intersection of the
rhombus with the nozzle wall that terminates the minimum-length-nozzle contour.

12



In light of these efforts to eliminate the predicted shock wave, it is natural to
question the effect on the nozzle flow should the shock be allowed to develop. Weak
disturbances (as the present shocks are assumed to be), though failing to separate the
boundary layer, may cause perturbations in the expected flow quantities or a general
increase in the entropy of the nozzle flow. These effects, which reduce nozzle efficiency,
would be harmful in nozzles used with propulsive units. Such effects would render useless
nozzles used in investigatibns in which a relatively precise knowledge of the chemical
kinetics of the flow is required. In general, it is desirable to avoid shock formations in
most nozzles with high flow velocity.

Wave formations such as those discussed and predicted in the present paper have
not been observed experimentally to the author's knowledge. It is not certain whether
this lack of verification is due to a lack of investigation or to a washing-out effect due to
viscous effects. Since the flow adjacent to the wall experiences a decrease in the value
of tan‘l(cos ©1 dé*/dx) as it progresses downstream, it is conceivable that 0* varies
in a fashion such that an effective fluid-dynamic contouring of the wall occurs and allows
the overexpanded flow to adjust without the influence of a shock. These, however, are
speculations of the author and warrant additional investigation with viscous effects
accounted for.

Region II1

Region IIT consists of the flow field determined by the conical wall "fitted' at the
end of Region II. The flow in this region is relatively uninteresting, being shock free
and approaching source flow profiles far downstream of the nozzle entrance. It can be
argued on this basis that Apy - 0 as x — «, the one-dimensional analysis (appendix B)
now accurately predicting the flow profiles and quantities. A typical variation of Ay
over all regions is presented in figure 15. The decrease of Ay noted in region II is
due to the constancy of M, within this region and the increase in Mj. In region I,
Ayp increases initially to a value slightly above zero and then begins its asymptotic
approach to zero and purely one-dimensional flow.

CONCLUDING REMARKS

An analysis of supersonic flow phenomena for a calorically perfect gas in conical
nozzles has been made by use of the method of axisymmetric irrotational characteristics.
The following remarks are based on the resulis of this analysis:

(1) The present forward-computing characteristics solution provides a means of
generating transition contours and evaluating the resulting shock-free flow. Provisions
are made for fitting conical sections to the transition region or the contours may be
extended to yield a minimum-length nozzle with uniform exiting flow.

13



(2) The assumption of one-dimensional flow in such nozzles is shown to be seriously
in error in some flow regions.

(3) Provided source flow gradients can be tolerated, it is suggested that the axisym-
metric expansion generated by a sharp corner is the most straightforward means of
expanding a flow to high supersonic Mach numbers. In addition to achieving the desired
conditions in the minimum downstream distance, these conditions can be made to be
completely independent of both viscous effects and, within reason, the wall contour down-
stream of the sharp nozzle corner.

(4) Conical nozzles and other divergent but arbitrarily contoured nozzles are not
necessarily free of shock formations caused by axisymmetric overexpansions in such

flows.
Langley Research Center,

National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 28, 1966.
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APPENDIX A
CHARACTERISTIC EQUATIONS

As briefly as possible, the basic irrotational axisymmetric characteristic equations
used in this analysis are presented.

In differential form, the governing equations relating properties along a character-
istic of the first family are

g% = tan(6 + p)

dM dx (A1
— -dftanpy -7 —==0
M : y
and for the second family are
%XX = tan(d - p)
(A2)
Ei—1\4+d9tanu - m%=o
M y
where
1 _ sin p sin Otanu\
cos(8 + 1)
m = sin | sin 6 tan u (A3)
cos(6 - 1)
c = 1 +'y—;!.- M2

J

These equations, derived and presented in slightly different form in reference 6,
may be cast in finite-difference form and the unknown properties solved for at the inter-
section of characteristics of the opposite family. Equations by which solutions are
obtained at the various types of intersections are shown as follows:

For intersections at a general point:

Y- YAtE tan(6, + EA) - Xg tan(e_B - [.—LB)

= A4
*C tan(§A + iIA) - tan(G_B - HB) (ad)

15



APPENDIX A

Vo= (Xc - Xa)tan(@y + Hp) + Y5

MB - MA + CBMBGB tan By + CAMAeAtan Ba

. E13.1‘-’_113“7‘_13("0 -xg) LMyl alfc - %p)

GC=

Mg = EAMy(6c - Op)tan Fp + = + My

For intersections at a wall point:

) Vg - Yp * X4 tan Oy -_1‘<B_ﬁa11_(6B - TLB)

X —=
c tan 6y, ~ tan (6 - Fp)

yc=(xC - x,)tan Oy + ¥,

M = EgMp (6p - by)tan g + 5 B

For intersections at a center-line point:

M, obtained from equation (A7)

C
For intersections one point off the center line:

and M

X Yoo C
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obtained from equations (A4), (A5), and (A7), respectively

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)




APPENDIX A

9C=MB-MA+CAMA9Atanp.A- A (A14)
EAIVIA tan ﬁA + ZEBI\—/IB tan EB

Equations (A1) to (A14), being well known and frequently used, will not be discussed
further either with regard to their derivation or their general application. It should,
however, be pointed out that in the present solution, once first approximations of the
unknown at C have been determined, second approximations that consider second-order
terms are obtained by using the average of the valuesat A and C,orat B and C,
for the inclination of the characteristic lines and for all values of quantities that appear in
the coefficients of equations (Al) and (A2) (the barred quantities in eqs. (A4) to (A14)).

17



APPENDIX B
SOURCE FLOW

The properties of source flow pictured physically in the following sketch

vy} X

Sketch B-1

may be simply determined with the aid of the compressible continuity equation, written in
spherical coordinates (r, 6,¢), which is

1 ) 1 b .
(r20Vs) + g7 (PVe) + Tamg 5 (Vo Sin 6 = 0 (B1)

18
r2 or
Since for source flow Vg= V¢ = 0, equation (B1) may be written
r2pV, = Constant (B2)
Evaluating the constant appearing in equation (B2) at some reference point (at which condi-

tions are known) and applying the isentropic steady-flow relations yields the following
implicit solution for M in terms of r:

_y+l
y-1 2\2(v-1)
Mref=/1 5= Mot r \? (B3)
M \ 1+Y-1m2 Iref
2

18



APPENDIX B

If the reference point is chosen so that it lies on the wall, or boundary of the flow, and has
the Cartesian coordinates x =0, y = -1, it follows that

. 1 A
rref = -(sin oy)~
X=r cos 6 +cot 9w> (B4)

y=rsin 8

w
These equations allow the complete and exact specification of the source flow field.

In order to provide required input for the numerical solution of the source flow
field, values of flow quantities must be known along a characteristic from the reference
point to the center line. The slope of this characteristic is given as

%XX = tan(0 + p) (B5)
If equation (B4) in differential form is substituted into (B5) the result may be written as
%5 tan p = déo (B6)

Recognizing that tan p = (M2 - 1)'1/ 2 and utilizing equation (B3) allows equation (B6)
to be integrated in closed form to give

M

_Affy 1, 1 M2 -1 11
0-6 tan - cos™t — (B7)
w3 L Vo +1)/6 - 1) M
Myes

With equations (B3), (B4), and (B7) the leading characteristic is completely defined and
the necessary input available.
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Figure 1.- General configuration and coordinate system for conical nozzie.
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Figure 5.- Constant Mach number contours with shock eliminated for M; = 2.0, 8| = 9.58, and ) = 15.15.
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